

LED点阵式电 子广告牌控制

课堂导入

新知讲解

实践探究

创新凝练

知识目标:

了解LED点阵的结构及工作原理

掌握单片机与LED点阵接口技术

了解LED点阵的显示技术

掌握单片机与LED点阵的接口电路设计及编程控制方法

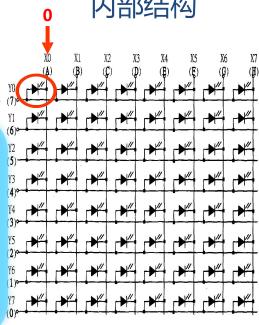
新知讲解

实践探究

创新凝练

LED点阵是单片机系统中重要的显示工具

,也是市场上广泛应用的广告显示工具



高电平

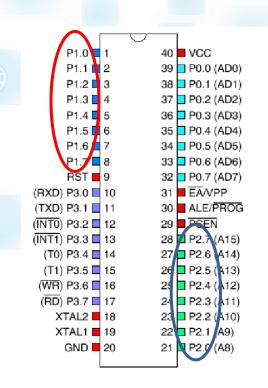
显示原理:

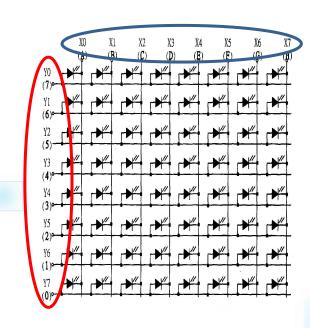
对应的行输出高电平 对应的列输出低电平 点亮相应的点。

内部结构

思考?

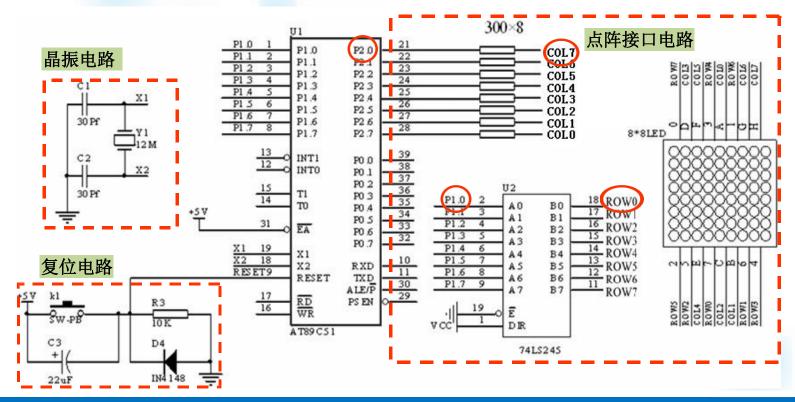
如何鉴别 共阳极? 共阴极?


新知讲解

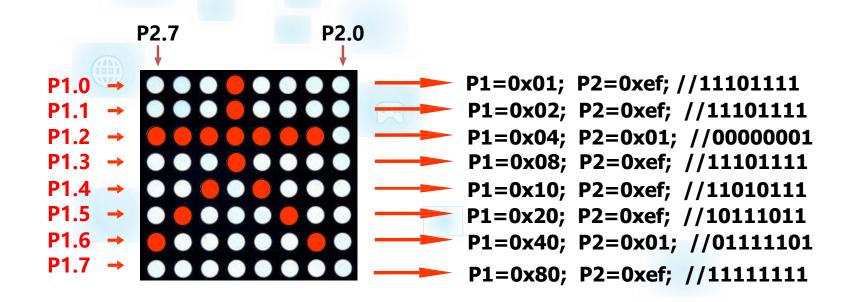

实践探究

创新凝练

>> LED点阵的接口技术



>> LED点阵的接口技术



新知讲解

实践探究

LED点阵的显示原理

新知讲解

实践探究

创新凝练

>>> LED点阵的显示原理

LED点阵的八行八列控制引脚分别与两个八位I/O端口相连。

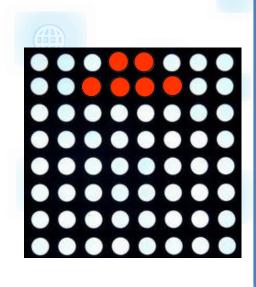
显示字符"大"的过程如下:

先给第一行送高电平(行高电平有效),同时给8列送11110111(列低电平有效);然后给第二行送高电平,同时给8列送11110111;

最后给第八行送高电平,同时给8列送11111111。 每行点亮延时时间为1ms,第八行结束后再从第一行开始循环显示。利用视觉驻留现象 ,人们看到的就是一个稳定的图形。

LED点阵的这种显示方式就是逐行扫描动态显示。

新知讲解



LED点阵式电


```
#include <reg51.h>
main()
{while(1)
{P1=0x01;}
 P2=0xe7;
 delay(100);
 P1=0x02;
 P2 = 0xc3;
 delay(100);
    //延时1ms}
```

注意

逐行动态显示

透过现象看本质

新知讲解

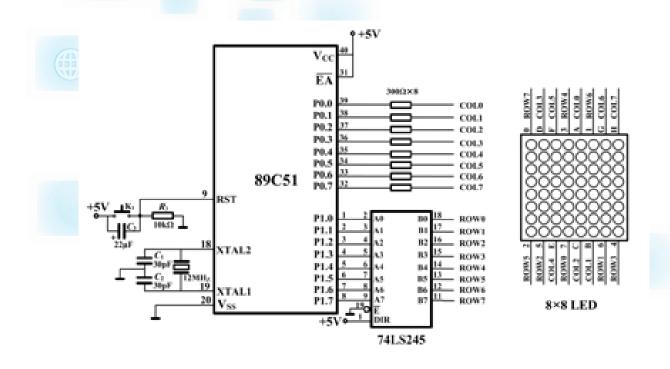
实践探究

单片机控制8*8LED点阵屏显示字符"大"。

原理图

程序代码

工作现象: 8*8LED点阵屏稳定显示字


符"大"。

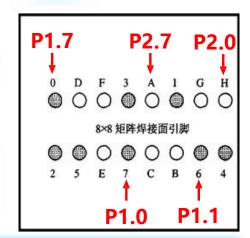
元器件名称	规格	数量(个)
面包板		1
电阻1	560 Ω	8
电阻2	10k Ω	1
电解电容器	10µF	1
瓷片电容器	30p	2
晶体振荡器	12Mkz	1
LED点阵	8*8	1
驱动芯片	74LS245	1
单片机	STC89c52	1

LED大屏幕显示器接口

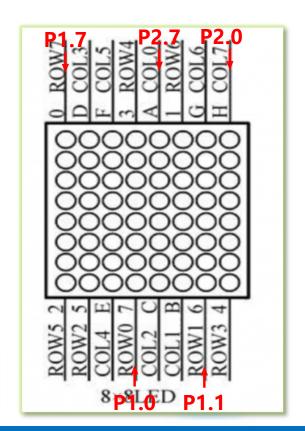
新知讲解

实践探究

创新凝练



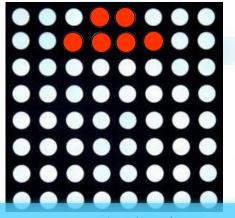
问题1——硬件原因


COLO COL1 COL6 COL7

A B C D E F G H

ROW0-7
ROW1-6
ROW2-5
ROW3-4
ROW4-3
ROW5-2
ROW6-1
ROW7-0

出错原因: (不畏困难 不懈钻研) LED点阵的行列引脚分布是没有规律的



问题2——程序原因

LED点阵式电

子广告牌控制

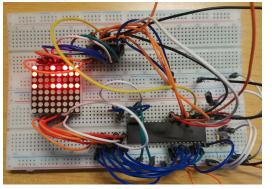
出错原因: 延时时间的长短

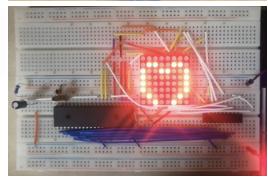
细节决定成败

```
#include <reg51.h>
main()
{while(1)
{P1=0x01;}
 P2=0xe7;
 delay(100);
 P1=0x02;
 P2 = 0xc3;
 delay(100);
    //延时100ms}
```

```
#include <reg51.h>
main()
{while(1)
{P1=0x01;}
P2=0xe7;
delay(1);
P1=0x02;
P2=0xc3;
delay(1);
     //延时1ms}
```


新知讲解


实践探究


创新凝练

实物展示:

规范意识

精益求精

新知讲解

实践探究

创新凝练

评价标准——教学目标实现情况(过程评价标准意识)

是否按照工程实践操作规程进行。

与小组成员的协作。

电路连接是否符合电路安全规范。

● 仪器仪表使用是否正确。

数码管不能正常显示时,能 否分析故障原因,确定故障 点并进行排除。 任务完成后设备和座椅的规整以及卫生情况。

作业习题

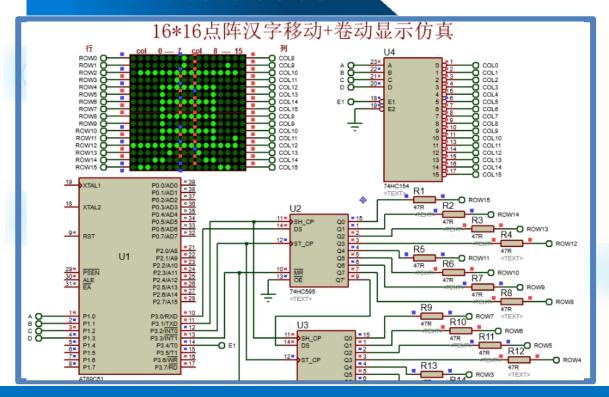
创新尝试

不同的显示内容 和显示花样

思考?

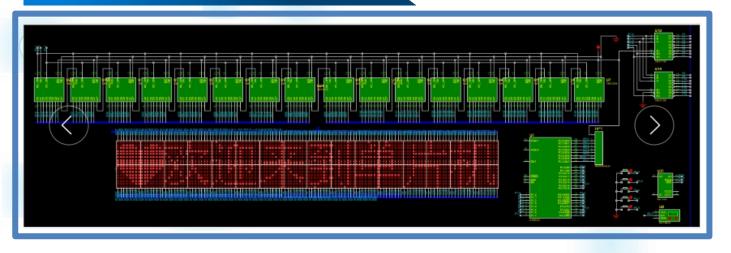
16*16LED点阵的显示控制

自主学习


16*16LED点阵 显示怎么办

课后拓展创新

市场上不同的显示花样


课下查阅74LS245、74LS04两个 芯片的功能、引脚分布图和真值表。

16*16点阵仿真案例

16*128点阵仿真案例

